
REDUCING FORMATION-KEEPING MANEUVER COSTS FOR FORMATION

FLYING SATELLITES IN LOW-EARTH ORBIT

Nicholas Hamilton*

ABSTRACT

Several techniques are used to synthesize the formation-keeping control law for a

three-satellite formation in low-earth orbit. The objective is to minimize maneuver cost

and position tracking error. Initial reductions are found for a one-satellite case by tuning

the state-weighting matrix within the linear-quadratic-Gaussian framework. Further

savings come from adjusting the maneuver interval. Scenarios examined include cases

with and without process noise. These results are then applied to a three-satellite

formation. For both the one-satellite and three-satellite cases, increasing the maneuver

interval yields a decrease in maneuver cost and an increase in position tracking error. A

maneuver interval of 8-10 minutes provides a good trade-off between maneuver cost and

position tracking error. An analysis of the closed-loop poles with respect to varying

maneuver intervals explains the effectiveness of the chosen maneuver interval.

INTRODUCTION

Currently, formation flying spacecraft control is being extensively researched.

This paper presents a strategy to reduce the amount of control needed for formation

keeping within the framework of a linear-quadratic-Gaussian (LQG) controller. By

varying the maneuver interval, the trade off between maneuver cost and position tracking
error is discovered.

Speyer 1 first introduced a decentralized LQG control method. Carpenter 2'3

applied this work to formation flying satellites, and further expanded it to deal with both

time-invariant and time-varying systems. Carpenter, Folta, and Quinn 4 investigated the

decentralized framework for the applicability of autonomous formation flying control for

the EO-1 mission to follow Landsat-7. In addition, Sparks 5 studied the long-term A V for
a relative circular formation at an 800 km altitude orbit. Orbital rendezvous is a related

problem to formation flying. Kluever and Tanck 6 looked at reducing A V for a

geosynchronous orbit rendezvous problem using constant thrust magnitudes and varying

thrust lengths, as well as varying maneuver intervals.

This paper will address tuning an LQG controller by adjusting the cost of the state

tracking error in an effort to minimize the maneuver cost. These results will then be

applied to a scenario that drives one satellite from random initial conditions to the origin.

Further reductions to maneuver cost will be achieved by varying the maneuver interval.

Finally, the one-satellite results will be tested on a three-satellite formation simulation.

* Second Lieutenant, United States Air Force, with NASA-Goddard Space Flight Center as part of the
Program for Research and Education in Space Technology
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SYSTEM MODEL AND CONTROLLER DESIGN

Both Kaplan 7 and Carpenter 3 describe the dynamics for formations of closely

spaced satellites in low-Earth orbits. In summary, for each formation, an imaginary

satellite, or hub, is in a circular low-Earth orbit. This hub defines a reference frame with

radial, in-track, and cross-track components. The radial component is in the direction

from the central body (Earth) to the hub, the in-track component is in the direction of the

hub's motion, and the cross-track component is in the direction of the orbit normal.

Hill's equations give the mathematics of the relative motion between the real satellites
and the hub.

Controller Design

Carpenter built a standard LQG controller for the relative motion of the formation

with respect to the hub. The cost function to be minimized for this problem is

" R T

Lj=_

subject to the dynamic constraint

= AX + BU + w, (2)

where Xis the state vector consisting of the positions and velocities for each satellite in

the formation, U is the control vector, and w is the process noise that has power spectral

density
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U-U R is the maneuver cost, and X-X R is the state tracking error. Specifically for this

application,

U=AV

U R =0 .

S u = 0

Of interest to this paper are the W and V matrices. In Equation 1 they can be time

varying, but are constant matrices in this study. W is the continuous state-weighting

(3-a,b)

(4-a,b,c)
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matrix,and V is the continuous control-weighting matrix. For this study, Equation 1 can

be simplified to

j=l

Carpenter 3 also gives the discrete forms

li+l

Wj (ti+ 1,ti) = I*(t,t,)r W(t)c_(t,t,)dt

ti

li+l

Vf (ti+l,t,) = I[Bj_(t,t,)rW(t)Bj(t, ti)+ VJ (t)]dt
I i

where q) is the state transition matrix, and ff is the continuous control mapping whose

discrete form is given by

Bj (t, t,) = _ _(t, v) r B j (r)dv. (7)

Thej in the above equations is the notation describing each node (or satellite) in the

formation. The integrals in Equations 6a, 6b, and 7 are approximated as

Wa(t,+I,t, ) _ [c_(t,+_,t, )r wo(t,+_ ,t, ) ]" [t,+_ - t, ]

Vj (ti+l,ti) [B_ r j(ti+l,t,) WBa(ti+l,ti)+vJ]'[t,+l-ti],

J [*(t,+l,,,)Bd (/i+1, ti ) _

except as noted below.

In this study, I simulate the control and tracking of both one-satellite and three-

satellite formations with varying maneuver intervals. For all scenarios, the simulation
rims for two revolutions of the hub around the earth. The maneuvers are considered ideal

and impulsive.

(6-a,b)

(8-a,b,c)

LQR Controller Tuning

One way to reduce control effort is to tune the state weighting matrix and/or the

control-weighting matrix. The relationship between these two matrices is what matters,

rather than their individual values. Therefore, the control-weighting matrix can be kept

constant, at identity, while the state-weighting matrix is varied. The controller is tuned
without noise.

The state weighting matrix is a block diagonal matrix with each block relating to

an individual satellite. All satellites are assumed to be identical, so

W = -. . (9)

w,
Because the satellites are assumed identical, tuning can be done on one satellite and then

applied similarly to others if necessary. For the one satellite case,

W=Wj. (10)

Denoting the position weights by a and the velocity weights by b, I assume a diagonal Wj:
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where,asa startingpoint,

W/=

a

b
(11)

a = 0.04 . (12-a,b)
b = 40000

To tune Wj, initial conditions are chosen, an a is chosen, the simulation is run, and

the process is repeated until the minimum AV is found for that set of initial conditions. In

the simulation, the satellite is driven from its initial conditions to the reference orbit. The

reference orbit for one satellite is simply zero with respect to the hub. In other words, the

satellite is driven from an initial offset to the origin. Total AV in this case is the sum of

the absolute values of the control for every maneuver. I found that the magnitude of the

initial displacements has no effect on determining which a is best. However, because the

radial and in-track states are coupled, the relationship between the initial conditions on

those two displacements does have an effect on which a is best. I performed two

investigations. In the first, I studied only in-plane initial conditions, and in the second,

only out-of-plane initial conditions.

For the in-plane study,

X0=[r 0 i0 0 0 0 0]

(13-a,b)
a = r0_/_

/ V

where ro is the radial initial condition and io is the in-track initial condition. Table 1

shows how the "best" a varies with a:

Table 1100,10, 1 0908
Bestal 0.16 0.16 I _1410 0.13 0.09 0.05 0.05 0.04 0.03 0.03 0.02

By choosing the best a, the total AV for 2 revolutions can be reduced by up to 1

m/s for some cases when the initial displacements are on the order of 500 meters. As

approaches zero (the in-track initial displacement is much greater than the radial initial

displacement), the minimum AVoccurs at a value of a less than 0.02. However, the

satellite does not converge on the reference orbit within one revolution. Choosing a to be

0.02 for values of a less than 0.5 ensures convergence within one revolution, even though
the AVis not a minimum.

Rather than implement a table lookup in the software to determine the a for a

given initial state vector, two scenarios will be investigated. The first case sets a equal to

one. This is a reasonable choice applicable for running random or semi-random initial

state vectors. Choosing the weighting a -- 0.05 (ct = 1), a similar process to finding the

best a can be done to determine the best b. The total A V savings for differing b are very

small, on the order of 0.01 m/s for two revolutions. Nevertheless, the best b is 39000 for
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a = 0.05. The second case is a equal to one half. This is chosen based on the three-

satellite formation reference orbit proposed by Alfriend, Schaub, and Gim 8 for the

TechSat21 program. Choosing the weighting a = 0.02 (ct = 0.5), the best b is once again
39000.

The process of finding the best a is repeated for the uncoupled cross-track initial

displacements as well. For this case,

Xo=[0 0 c 0 0 0]. (14)

I found the best a to be 0.03, and the corresponding best b to be 36000, regardless of the

initial cross-track displacement. For the cross-track offset of 500 meters, altering a and b

only resulted in total A V savings of 0.05 m/s for two revolutions.

PERFORMANCE EVALUATION

One-Satellite Simulation

Next, I used simulations with random initial conditions with and without process

noise to determine the performance of the controller. For these cases, the state weighting
matrix is chosen to be

-0.05

0.05

0.05
= = (15)

W Wj 40000

40000

4000{3

This choice is not the best for the cross-track displacements, but the effect is negligible

once noise is introduced. First, 15 "semi-random" initial displacements are chosen in the

radial and in-track directions. The offsets range from -500 meters to +500 meters in both

directions. The set of runs over these 15 points yields statistical results that are used to

determine trends. The 15 points are shown below in Figure 1 and remain the same for all

subsequent cases.
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Figure 1: Assorted initial conditions for one satellite simulation

The total A V is defined as the sum of the absolute value of all control effort. The

total A V is calculated for simulations of each of the 15 initial conditions, with all noise

turned off. The RMS is then calculated over the set of 15 total AV's with no noise, and

found to be 2.2634 m/s. The maneuver interval in this case is one minute.

Next, the process noise is turned on and the simulation is run again for each of the

15 points. In addition to determining the total AV, the steady-state tracking error is

calculated as well. Steady-state tracking error is measured by defining Ax, which is a

statistical determination of how far the satellite is from its reference orbit (during the

second half of the simulation.)
Let

where

Ax j = RSS(Ax_), (16)

Ax, j _/(r. r._e/)2 +(i. .re/ 2 re/)2. (17)= - -l. ) +(c.-c.
r., i_, and c. are the radial, in-track, and cross-track positions of each satellite at some
time n; and r. _f i. ,ef and c. _efare the radial, in-track, and cross-track reference positions

for each satellite at some time n. Figure 2 shows Ax. plotted against time for the one-
satellite scenario at different maneuver intervals.
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Figure 2: Position tracking error (3x.) versus time

The RMS is calculated over the set of 15 AV's and 15 Ax's for each maneuver

interval. Table 2 and Figure 3 summarize the results of the simulations using various
maneuver intervals.

Table 2: Data corresponding to Figure 3
Maneuver

interval

RMS AV

(m/s)

1 min

8.4514

2 min

5.8260

5 min

3.3272

10 min

2.1793

15 min

1.6827

23 min

1.3920

RMSAx(m) 58.3374 74.2114 143.2634 317.4274 646.8495 1058.5662

One satellite w/process noi_e

1 rnin

8 ........... 7 ............. r ................ i............... T ................ ,................

i i i i i
200 4OO 6O0 80(3 1000 1200

RMS delta x (m)

Figure 3: RMS of total AVversus the RMS of Ax for one satellite with process noise
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As one can see, with process noise on, the amount of control or total AVneeded is

higher (8.4514 versus 2.2634 m/s). One way to reduce total A V is to reduce the number

of maneuvers performed. The trade off for reducing A V using this method is that the Ax

increases. In other words, reducing the number of maneuvers decreases the amount of

control needed, but the displacement error due to the noise increases.

Three-Satellite Simulation

Next, I tested the controller design in a three-satellite simulation. For this study, I

used the "best" a and b determined above for the state weighting matrix.

0.02

0.02

Wj =

0.03

39000

39000 (18-a,b)

36000

W= Wj

Wj
The reference orbit is the "circular horizontal plane" formation proposed by Alfriend,

Schaub, and Gim a. The horizontal plane is formed by the in-track and cross-track basis

vectors. The radial projection is half the length of the in-track projection. This ellipse is

then inclined out-of-plane so the projection on the horizontal plane is circular. Finally,

the satellites are arranged such that their projections on the horizontal plane are always

spaced 120 degrees apart. The formation appears to be a rotating equilateral triangle in

the circular horizontal plane with the hub at the center of the triangle. For initial

conditions, all satellites are started at the hub with zero velocity:

XJ=[0 0 0 0 0 0]. (19)
0

One difference between this study and the previous studies is in the calculation of the

discrete cost weighting matrices, Wa and Va. Using the MATLAB symbolic toolbox, the

state transition matrix can be expressed symbolically. With this, the exact definite

integrals shown in Equations 6a, 6b, and 7 can be calculated exactly rather than

approximated by Equations 8a, 8b, and 8c.

With noise turned off, the simulation is run at the different maneuver intervals. In

addition to Ax, another determination of tracking error is calculated which I will call/_x.

/_x is similar to Ax except that instead of taking the time-wise RSS of the Axn vector, the

mean is taken. This is still done for the second half of the simulation, after the initial

convergence. Table 3 and the Figure 4 illustrate the results.
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Satellite # 1
Table 3: Data corresponding to Figure 4

Maneuver 1 min 2 min 5 min

Interval

AV(m/s) 9.007 8.179 5.660

Px (m) 10.224 1.676 1.463

Satellite # 2

Maneuver 1 min 2 min 5 min

Interval

AV(m/s) 14.121 12.63 8.609

/2x (m) 6.713 2.071 1.662
Satellite # 3

Maneuver 1 min 2 min 5 min

Interval

AV(m/s) 10.807 9.370 7.027

/2x (m) 5.857 2.505 0.471

8 min

4.654

0.979

8 min

6.732

1.606

8 min

6.066

0.795

9min 10min 15min 23min

4.452 4.310 3.881 3.454

0.883 0.907 3.851 17.108

9min 10min 15min 23min

6.363 6.052 5.044 4.650

1.646 1.902 7.688 33.768

9min 10min 15min 23min

5.863 5.696 5.142 4.694

1.087 1.693 9.442 35.049

Three satellites--No noise
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Figure 4: Total AVversus/Zx for three-Satellite formation with no noise

As expected, with fewer maneuvers, less total AV is required. However,/Ix actually is at
a minimum around the 8-10 minute maneuver intervals. This differs from the one

satellite case where the position tracking error was smaller with more maneuvers.

Figure 5 shows the closed-loop poles in the polar plane (z-plane) as they vary

with increasing maneuver intervals. From Phillips and Nagle 9, the poles are of the form

z = e "r , (20)

where z is the discrete closed-loop pole, s is the continuous closed-loop pole, and T is the
maneuver interval.
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Closed loop poles varying with maneuver intewal
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Figure 5: Closed-loop poles varying with maneuver interval (one satellite)

Poles within the unit circle are stable. Specifically looking at the set of poles on the far

right in Figure 5, at the 8 minute maneuver interval they are still on the real axis; at the 9

minute maneuver interval they have just left the real axis; and at the 10 minute maneuver

interval they have further diverged. Converting this set of poles back to the s-plane, the

settling time for a second order system is approximated by Nise 1° as

7',. = ,,%1+ s2)' (21)

where sl and s2 are the corresponding s-plane poles at a given maneuver interval. A

second order system assumption is valid because these poles are the most dominant.

Figure 6 shows the relationship between settling time and maneuver interval.

95 I

_ 8s.... ,,...... j-.......... i........... i......... i.......

__oo,.___.................. ....

7_ ...... i_ ...................

7o, i i I i
0 5 10 15 20 25

Maneuver interval (min)

Figure 6: Settling time versus maneuver interval

Note that around the 8-10 minute maneuver interval, a minimum settling time occurs.

This helps to explain the minimum #x around the same maneuver interval range.
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Next, theprocessnoiseis turnedon andthesimulationisrun five timesfor each
of themaneuverintervals. TheRMSis takenfor thetotalAVand/_xfor eachsatelliteat
eachmaneuverinterval. Table4 andFigure7 showtheresults.

Table 4: Data corresponding to Figure 7

Satellite # 1

Maneuver 1 min 2 min 5 min 8 min 9 min 10 min 15 min 23 min

Interval

RMS AV 13.734 10.140 6.653 5.283 5.107 4.888 4.334 3.734

(m/s)
RMS/Ix 11.226 13.565 14.303 27.780 27.877 27.119 56.006 95.106

(m)

Satellite # 2

Maneuver 1 min 2 rain 5 min 8 rain 9 min 10 min 15 min 23 min

Interval

RMS AV 18.005 14.276 9.258 7.217 6.597 6.261 5.110 4.767

(m/s)
9.021 11.779 17.701 27.796 27.505 36.165 44.963 111.545RMS/_x

(m)

Satellite # 3

Maneuver

Interval

RMS AV

(m/s)
RMS/_x

(m)

1 min

14.857

7.962

2 min

11.784

7.816

5 min

8.217

12.014

8 min

6.950

20.882

9 min

6.637

26.240

10 min

6.341

22.216

15 min

5.446

39.782

23 min

4.875

117.646

Figure 7:

3 Satellites w/process noise
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RMS of total A V versus RMS of gx for three-satellite formation with process noise
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Theseresultsshowthesametrendastheonesatellitecase.Fewermaneuverscorrespond
to lesstotal AV, but also lead to increases in position tracking error. A small discrepancy

remains around the 8-10 minute maneuver intervals. I attribute this to only having five
runs from which to take the statistics. I believe more runs would smooth these curves

out.

CONCLUSION

A method for reducing formation-keeping maneuver cost has been developed.

Tuning the state-weighting matrix of a single satellite yields a relationship between initial

conditions and total AV. These results are applied to the three-satellite formation based

on the desired geometry. By altering the maneuver interval, a relationship has been

found between total A V and position tracking error. For all cases, fewer maneuvers

require less AV. However, fewer maneuvers also tend to increase the position tracking

error. Based on a closed-loop pole analysis neglecting noise, a minimum mean position

tracking error is found to correspond to an 8 minute maneuver interval. This analysis is

verified by the simulation. Once process noise is included, position tracking error

continually increases as fewer maneuvers are performed and is inversely proportional to

the A V needed. An 8-10 minute maneuver interval appears to be a good tradeoff between

maneuver cost and position tracking error.
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